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SUMMARY 
In this paper we present streamline-upwind/Petrov-Galerkin finite element procedures for two-dimensional 
fluid dynamics computations based on the vorticity-stream function formulation of the incompressible 
Navier-Stokes equations. We address the difficulties associated with the convection term in the vorticity 
transport equation, lack of boundary condition for the vorticity at no-slip boundaries, and determination 
of the value of the stream function at the internal boundaries for multiply connected domains. The proposed 
techniques, implemented within the framework of block-iteration methods, have successfully been applied to 
various problems involving simply and multiply connected domains. 
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1. INTRODUCTION 

There are some advantages in using the vorticity-stream function formulation of the incom- 
pressible Navier-Stokes equations for two-dimensional computations. Compared to the 
velocity-pressure formulation, the vorticity-stream function formulation leads to computed flow 
fields which satisfy the incompressibility condition automatically; also the number of unknown 
functions is reduced from three to two and the vorticity field is computed directly instead of being 
obtained by differentiation of the velocity field. The last advantage becomes important if one needs 
to study the vorticity field and therefore wants that this field be represented as accurately as 
possible. 

We propose suitable finite element procedures for the solution of the time-dependent vorticity 
transport equation and the Poisson’s equation which relates the stream function to the vorticity. 
The difficulties associated with the convection term in the vorticity transport equation, lack of 
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boundary conditions for the vorticity at no-slip boundaries, and determination of the value of the 
stream function at the internal boundaries for multiply connected domains are addressed. 

The vorticity transport equation involves a convection term which becomes more and more 
dominant as the Reynolds number of the flow increases. It is well known that, due to such 
dominant convection terms, especially in the presence of the sharp layers in the solution, regular 
(Bubnov-) Galerkin finite element and classical centred finite difference methods lead to spurious 
oscillations in the solution. To minimize such oscillations, we employ streamline- 
upwind/Petrov-Galerkin (SUPG) schemes. These schemes, which introduce minimal numerical 
diffusion, have been successfully applied to various fluid dynamics and 
convection-diffusion-reaction problems.’ - 6  The weighting function which would otherwise lead 
to a regular Galerkin formulation is perturbed by a term which senses the temporal and spatial 
discretizations of a p r ~ b l e m . ~  Certain choices lead to symmetric, positive-definite coefficient 
matrices, and this is an advantage when one uses iterative solution techniques such as conjugate 
gradient methods7 and element-by-element approximate factorization schemes.’ 

At  no-slip boundaries corresponding to solid surfaces, while there are two boundary conditions 
available (normal and tangential derivatives) for the stream function one can find none for the 
vorticity. By employing proper function spaces, from the Poisson’s equation we extract variational 
equations for the vorticity at such boundaries and for the stream function in the interior regions of 
the domain. In our block-iteration scheme we keep the solution of the vorticity transport and 
Poisson’s equations uncoupled. This enables us to leave the matrices for the equation systems 
corresponding to the Poisson’s equation as symmetric and positive-definite. Alternative ap- 
proaches to the numerical treatment of the vorticity at no-slip boundaries are discussed in 
References 9 and 10. 

For simply connected domains the stream function at a no-slip boundary can be obtained by 
integrating its tangential derivative. For such an integration the integration constant is either 
known or can be arbitrarily set equal to a reference stream function value. However, for problems 
with multiply connected domains the integration constant for each of the internal boundaries is 
also an unknown and needs to be determined as part of the solution. The additional equation 
required for each internal boundary can be obtained by integrating the equation of motion in the 
velocity-pressure formulation along that boundary. The resulting equation together with the 
vorticity transport equation can be used with the aid of a suitable function space to obtain 
the additional variational equation needed. Discussion of problems with multiply connected 
domains can also be found in References 1 1  and 12. It is proper to note that for computations 
based on the velocity-pressure formulation of the Navier-Stokes equations (see e.g. References 
12-15) one does not have to deal with the technical difficulty related to multiply connected 
domains. 

In Section 2 the problem statement is given. The finite element formulation is presented in 
Section 3. We describe our time integration scheme in Section 4 and the selection of the 
Petrov-Galerkin weighting function in Section 5. Numerical examples and conclusions are 
presented in Sections 6 and 7 respectively. 

2. FORMULATION O F  THE PROBLEM 

The vorticity-stream function formulation of the incompressible Navier-Stokes equations in two 
dimensions consists of two coupled scalar equations: a time-dependent transport equation for the 
unknown vorticity function w and an equation which relates the unknown stream function $ to 
the vorticity. 

Let 0 be a domain in R 2  and let T be a positive real number. The spatial and temporal co- 
ordinates are denoted by x €0 and t E [O, T I ,  where a superposed bar indicates the set closure. The 
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equations for o(x,  t )  and $(x, t )  are given as follows: 

awlat + u vw = V V ~ O  on n x (0, T ) ,  (1) 

V2$= -w on nx (0 ,  T) ,  (2) 
where u(x, t )  is the velocity and v is the kinematic viscosity. The vorticity and the stream function 
are related to the velocity field by the following equations: 

( 3 )  0 = au2/ax, - aul/ax,, 

We assume first that the domain is simply connected and that the boundary r of the domain Q 
admits the following decompositions with respect to the types of boundary conditions specified for 
$ and o: 

Here Fg and rh denote the subsets of l- where the boundary condition specified for $ is of Dirichlet 
and Neumann type respectively. Similarly, T, and T,- represent the Dirichlet- and Neumann-type 
boundaries for o. Both Dirichlet- and Neumann-type boundary conditions for $ are specified on 
rG where neither o nor its normal derivative is known. It should be noted that all solid surfaces 
will be subsets of rG (unless the flow is inviscid and therefore the surface permits slip). 

Consider the following set of boundary conditions for $ and o: 

$(x, t )  = g(x, t )  on rg x (0, T) ,  

$(x, t )  = G(x, t )  on rc x (0, T ) ,  
(10) 

(1 1 )  

n - V$(x, t )  = udx, t )  = u - t on r G  x (0, T) ,  

on r h  x (0, TI, n * V$(x, t )  = h(x, t )  

4 x 7  t)=S”(x, t )  

vn - VW(X, t )  = Fi(x, t )  

on T,x (0, T) ,  

on T; x (0, T ) ,  

where n and t are the unit normal and tangential vectors to the boundary r (see Figure l), and u, is 
the tangential component of the velocity on the boundary. The functions g(x, t ) ,  G(x, t ) ,  u,(x, t),  
h(x, t), g(x, t )  and K(x, t )  are assumed to be given. 

The initial condition corresponding to the vorticity transport equation (1) is given as 

o(x, O)=oo(x) on Q. (16) 

Remarks 

1. The vorticity transport equation (1) belongs to a general class of convection4iffusion 

2. The flow field obtained from the solution of (1) and (2) is inherently divergence-free. 
equations. In this case the transported quantity is the vorticity w. 
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n 

Figure 1 .  Convention for the normal and tangential vectors 

3. The boundary condition (1 1) originates from the following condition on the normal velocity: 

-~-Vt,b(x, t)=u,(x, t )=u .n  on Tcx(O, T), (17) 

where u,(x, t )  is a given function (which is usually zero). The trace of the stream function G can be 
obtained by integration: 

C(X, t )  = - u,(x, t) dz, (18) s 
which necessitates an integration constant. If the domain is not multiply connected, this 
integration constant is known or can arbitrarily be set equal to a reference stream function value. 
However, for problems with multiply connected domains where there is at least one internal 
boundary, the integration constants for the internal boundaries become unknowns themselves to 
be determined as part of the solution. 

Multiply connected domains 

Let To denote the external boundary of a multiply connected domain R and let rk denote the 
boundary corresponding to the kth hole (obstacle) in the domain 52 with k = 1,2, . . . , q, where q is 
the number of holes in the domain. The entire boundary r can be expressed as 

n 

r=  0 rk. 
k = O  

The decompositions expressed by (6H9) now apply to the external boundary To. To the boundary 
conditions given by (lOHl5) we add the following conditions for the internal boundaries: 

n-V$(x, t)=u,(x, t )  on rk x ( 0 ,  T ) ,  k =  1,2, .  . . , q, (20) 

-t.Vt,b(x,t)=u,(x,t) on rkX(0,  T ) ,  k = l , 2 , .  . . ,q .  (21) 

These conditions are identical to those given by (12) and (17) for the boundary rG. 
Assuming that u, = 0, we can deduce from (21) that $ is constant (an unknown constant) along 

each rk. Additional equations needed to determine these constants can be obtained by writing the 
velocity-pressure formulation of the equation of motion along each rk; that is, 

&,/at + u, au,/az + ( 1  / p ) a p / d r  + vao/dn = 0 
on rk x (0, T ) ,  k =  1,2, . . . , q, (22) 
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or 

au7/at + a(+; + p/p)/az + vaw/an = o 
on rk x (0, T ) ,  k =  1, 2, . . . , 4. (23) 

Assuming u, = u,(t) (no stretching on the surface of the obstacle) and integrating both sides of (23) 
along rk, we obtain 

(dw/dn)dT = (au,/dt) dT + [ a ( f ~ f  + p/p)/dt]dT. (24) 
- j r k  j r k  

Since ($u: + p / p )  is single-valued, the second integral on the right-hand side of equation (24) is 
identically zero; therefore 

"lrk(8w/dn)dr= -(&,/at) dT= -Skau,/at on r k X ( 0 ,  T ) ,  k =  1,2,. . . , 4, (25) 
I k  

where sk is the length of the boundary rk. Equation (25) represents the additional constraint that 
the vorticity field needs to satisfy for each internal boundary rk. 

3. FINITE ELEMENT FORMULATION 

Let Qh denote a finite element discretization of the computational domain R into subdomains 
Re, e = 1,2, . . . , N,,,  where N , ,  is the number of elements. Let re denote the boundary of 0'. We 
assume 

Ne1 n= u s r e ,  (26) 
e =  1 

e =  1 

The internal boundary is defined as 
N.1 rint= u re-r. 
e =  1 

We associate to Qh the following finite-dimensional spaces: 

where P' is the space of first-order polynomials in xl, x2, and then 

where 
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The finite element formulation associated with equation (1) is given as follows: Find $" E S" and 
W" E $" such that for all W" E P:,, 

where ph is a C -  '(Q) perturbation to the weighting function w". Selection of this Petrov-Galerkin 
perturbation term will be discussed further in Section 5. The Euler-Lagrange equations corre- 
sponding to (36) can be obtained by integration by parts: 

2 s ~ ~ ( d o ~ / a t  + u * VW" - vV2wh) dQ 
e = l  Re 

+ j w"[vn - VW"] dT + wh(vn * V o h  - h", dT = 0, 
rint 

(37) 

where [ -1 is the 'jump' operator. 

Remarks 

I .  If the perturbation term p" is set to zero, then the formulation reduces to a (Bubnov-) 
Galerkin one; otherwise it becomes a Petrov-Galerkin formulation. Note that the modified 
weighting function, i.e. 

(38) 

acts only in the element interiors and therefore is allowed to be discontinuous across element 
boundaries. 

2. Various formulations for p" within the framework of streamline-upwind, sigma-weighting 
and transport-weighting Petrov-Galerkin procedures have been tested successfully in References 

Oh = W h  + p", 

1-6. 

The discrete variational formulation associated with (2) can be stated as follows: Find $" E S" 
and W" E S" such that 

and 

We can write I)" and W" as sums of their component functions as follows: 
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The unknowns are $:, and 0%. Note that 

In our implementation we employ a block-iteration scheme to solve equations (36), (39) and (40). 
During each iteration associated with (36), only w: is treated as unknown while the previous 
iteration values of tjt and w: are used. Equations (39) and (40) are taken as a single block; that is, 
during each iteration corresponding to (39) and (40), t,ht and w: are treated simultaneously as 
unknowns. 

Alternatively, we can assign a block to each of the equations (36), (39) and (40). That is, during 
each iteration associated with (36), (39) and (40), we can treat respectively w:, 1+9: and as 
unknown. As a result, the coefficient matrices for the second and third blocks would be symmetric, 
positive-definite; and this would provide an advantage for employing iterative solution techniques 
such as conjugate gradient methods' and element-by-element approximate factorization 
schemes8 

Multiply connected domains 

To accommodate the boundary conditions associated with the multiply connected domains, we 
need to modify and add new ones to the finite-dimensional spaces defined previously. We modify 
the definitions of Sh, V: and 

S h = { $ h l $ h ~ H 1 h ,  l l /h=g on rg, t j h = , G  on rG, &bh/&=O on rk, k = l ,  2, .  . . ,4}, (49) 

as follows: 

v:= w h l w h ~ ~ l h ,  wh&o on rgUrG lJ rk , (50) 
k =  1 

(51) 

r q l  
F:= W ~ ~ W ~ E H ~ ~ ,  W ~ G O  on r,Ur, u rk . { k =  q i  1 

Note that in (49) we assumed that the normal velocity is zero. Furthermore, we define two new 
spaces for k =  1,2,. . . , q: 

V: = (w"~w" E HIh,  whlno = O  VSZ'$Q,"}, (52) 

(53) 

Q [ = { Q e l Q e ~ Q h ,  ren rk#@}. (54) 

h h v h a h  ViR = { w Iw E k ,  w /az =o on rk} ('Ring function'), 
where 

The discrete variational formulations given by (36) and (39) remain valid with the modified/new 
definitions of the finite-dimensional spaces. The variational formulation given by (40) also remains 

valid with the provision that the variational space V: is replaced by V: u V: and the boundary 
q 

k = l  
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The variational formulation associated with (25) can be obtained from the vorticity transport 
equation ( 1 )  with the aid of the ‘Ring function’ space given by (53). This new variational 
formulation reads as follows: Find $ h ~ S h  and ~ ~ € 3 ~  such that for all wh E VtR, k =  1 ,2 , .  . . , q, 1 wh(dwh/dt) dR + 1 whu a V o h  dR+ v V w h  V w h  dR = v wh(doh/dn) d r .  

R R l r k  

1 wh(&oh /a t )  dR + whU. V w h  dR + v V w h  * V o h  dR = - wh(rk)skdu,/dt. 
R R L 

( 5 5 )  

Since wh is constant along rk, the right-hand side of (55) can be obtained from (25): 

(56) 

These equations are the additional variational formulations needed to solve the problem. Note 
that the term on the right-hand side of (56) is a known function of time and represents a source 
term. 

The decompositions of t+bh and wh given by (41) and (42) are modified as follows: 

where 

Remark. Another variational form can be obtained by replacing V: in (40) with ViR (the ‘Ring 
function’ space): find t,bh E S h  and oh E gh such that for all wh E VtR, k = 1,2, . . . , q, 

V w h .  Vll/h dR - whwh dR = whu, d r .  S. I, 
Note that since VcR c V:, this equation provides no more information than the multiply connected 
domain version of (40) already does. However, this equation can be substituted for one of the 
equations of (40) corresponding to any one of the basis functions in V,h. 

In the remaining part of this section, as we describe the block iteration schemes employed, 
whenever we refer to a certain variational formulation we mean to refer to its multiply connected 
version. 

is treated as unknown. Equations (39) and (61) 
are taken as the second block; during each iteration associated with (39) and (61), II/: and $:, 
k = 1,2, . . . , q, are treated simultaneously as unknowns. In the third block, associated with (40), ok 
and w:, k = 1,2, . . . , q, are taken as unknowns. However, for each interior boundary rk, one of the 
equations of the third block (corresponding to any one of the basis functions in V:) needs to be 
eliminated in favour of each equation given by (56) associated with that boundary. The fourth 
block consists of these equations corresponding to (56) and treats one of the nodal vorticity values 
on each rk as unknown. Note that these nodal vorticity values need to be removed from the list of 
unknowns for the third block. In other words, for every internal boundary rk, the third block loses 
the equation and the unknown vorticity associated with a certain node; whereas the fourth block, 
which always has the same set of equations, gains the unknown lost by the third block. 

The first block corresponds to (36) in which 
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Remarks 

1. The matrices involved in the second and third blocks are symmetric and positive-definite. 
2. With proper implementation, the matrix in the third block can be of tridiagonal form. This 

makes the solution of this block essentially as easy as the solution of a one-dimensional problem. 
3. Of course one can always couple the third and fourth blocks but at the expense of the nice 

properties mentioned in the first two remarks. 
4. Another approach would involve a local iteration procedure between the third and fourth 

blocks until a local convergence is reached. This procedure may allow selecting a different node to 
be 'lost' by the third block for each local iteration. 

4. TEMPORAL DISCRETIZATION 

We describe the temporal integration procedures employed within the framework of our block- 
iteration schemes. For problems with simply connected domains, the following system of ordinary 
differential equations is obtained from equations (36), (39) and (40): 

Ma, + Zlv, = F, (62) 

where v*, a,, d, and vG are the vectors of the nodal values of o:, am:/&, tj: and wt respectively. 
The vectors F and F as well as the matrices M, e, K and M are derived from equations (36), (39) 
and (40). These vectors and matrices are updated at the end of every iteration. The procedure, 
which uses a predictor/multi-corrector algorithm, is described as follows: 

Given: 

Prediction: 

Correction: 

(M + crAte)t+ lA(a*)L+ = FL+ -(Ma,+ c v , g +  = RL+ 1, (69) 

(v*,tYI =(v,X+ 1 +mAtA(a*):+ 1 9  (70) 

(a*XYl =(a*)l+1 +A(a*)L+19 (71) 

K(d,);:: - M ( v  G n + l -  )i+l -F'+' n + l ?  (72) 

(u);;: =(a t jh /ax , ,  -all/h/lax,);;:. (73) 

The corrections continue until the Lh,-norm of the residual vector RL:', becomes smaller than a 
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predetermined error toll. Here At is the time step and c1 is a parameter which controls the stability 
and accuracy of the time integration. 

In the procedure described above, equations (39) and (40) are taken as a single block represented 
by (64). As was mentioned in Section 3, an alternative approach would involve the decoupling of 
these two blocks. In that case, each of the equations given by (64), (67) and (72) needs to be replaced 
by a pair of equations, respectively, as follows: 

In  the differential equations: 

Kid, = FIb 

M I l l v G =  F , l I .  

In the prediction phase: 

(74) 

(75) 

In  the correction phase: 

K,,(d*XYI =(FllYn:l13 (78) 

MIII(VG):Yi =(F1,,E\.  (79) 
Note that the matrices K,, and M,,, are symmetric and positive-definite. With proper implemen- 
tation MI,, can be of tridiagonal form. 

Multiply connected domains 

In this case the procedure is similar to the alternative approach described above. The block 
given by (62) remains as it is. The block of (74) now has the unknown vectors d, and d, (vector of 
nodal values of $:), k = 1,2, . . . , q. The third block, given by (75), has the unknown vectors vG and 
vk (vector of nodal values of w'& k =  1,2, . . . , q. Note that for every internal boundary, the third 
block loses the equation and the unknown vsrticity associated with one node on that boundary. 
The fourth block replaces those equations and gains the unknowns lost by the third block. 

Note that the matrices of the second and third blocks are symmetric and positive-definite. 
Again, with proper implementation the matrix in the third block can be of tridiagonal form. 

5. SELECTION OF THE PETROV-GALERKIN WEIGHTING FUNCTION 

In the streamline-upwind/Petrov-Galerkin (SUPG) formulation employed, the perturbation to 
the weighting function can depend upon temporal as well as spatial discretizations. The weighting 
function associated with element node a is expressed, analogous to (38), as follows: 

Ra = Na + Pa, (80) 
where N ,  is the bilinear weighting function (associated with node a)  leading to a Galerkin 
formulation. The corresponding Petrov-Galerkin perturbation function Pa is defined by the 
following expre~sion:~ 

Pa=zC,,(h/2)s'VNa, (81) 
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where 

(‘element length’), 

and N , ,  is the number of element nodes. The parameter z depends on the element Reynolds 
number Re,, and is given as  follow^:^ 

z = min (Re,/3, 1) (doubly asymptotic approximation). (84) 

Reh= llullh/(2v)~ CO, 00). (85 )  

The element Reynolds number is defined as 

Of the three expressions given below for the ‘algorithmic Courant number’ C,,,’ Only the first one 
does not depend upon the temporal discretization. They are 

Czr= 1, (86) 

CZ, min (CAt? l), (87) 

(88) C,, = min (2/,/15 + (1 - 2/,/15)C,,, I), 

where CAr =Atllull/h is the element Courant number. A justification and a detailed stability and 
accuracy analysis for these choices can be found in Reference 5. 

Remark. The expression given by (87) leads to a symmetric and positive-definite coefficient 
matrix for the block corresponding to (36); for a proof see Reference 8. 

6. NUMERICAL EXAMPLES 

The methods described were tested on several problems including flow past a circular cylinder and 
plane jet impinging on a wedge (edgetone problem). In both cases the computed flow field starts 
out symmetric and then becomes unsymmetric due to a perturbation in the flow field introduced 
directly or by machine truncation error. 

Flow past a circular cylinder 

In this problem the Reynolds number based on the freestream velocity and the cylinder 
diameter is 100. The dimensions of the computational domain, normalized by the cylinder 
diameter, are 16 and 8 in the flow and cross-flow directions respectively. The finite element mesh, 
shown in Figure 2, consists of 1940 elements and 2037 nodes. Around the cylinder there are 20 
elements in the radial and 80 elements in the circumferential directions. As initial condition the 
value of the vorticity is set to zero everywhere. At the upstream boundary we specify the stream 
function and its normal derivative to have a uniform velocity field with magnitude 0.125. The 
upper and lower computational boundaries are taken as streamlines with zero vorticity. At the 
downstream boundary the normal derivative of both the vorticity and the stream function is set to 
zero. The time step of the computation is taken to be 1.0. 

We allowed the value of the stream function on the cylinder surface to be unknown and therefore 
employed our procedure for the multiply connected domains. However, since the computational 
domain is symmetric and the vortex shedding (non-symmetrical solution) occurs mainly behind 
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Figure 2. Flow past a circular cylinder at Re= 100; finite element mesh: 1940 elements, 2037 nodes 

the cylinder, it is also reasonabze to assume that the stream function on the cylinder is known. 
Solutions obtained by such an a s~umpt ion '~  compare well with our solutions. 

Initially the flow field develops in a symmetrical pattern with two attached eddies growingin the 
wake of the cylinder leading to a steady-state solution (see Figure 3). Upon introduction of a 
perturbation in the flow field, the symmetry breaks; and after a transient phase in which the sizes of 
the standing vortices oscillate, vortex shedding begins. The vortices are formed alternately at the 
upper and lower downstream vicinity of the cylinder and are carried downstream along the so- 
called Karman vortex street (see Figures 4 and 5). 

Plane jet impinging on a wedge (edgetone problem) 

This problem involves the interaction between a plane jet and a sharp leading edge. Simulations 
of this kind were first performed by Ohring" based on the finite difference method. 

In our application the jet inlet consists of a parabolic velocity profile with both the width and 
the mean value set to unity; and the Reynolds number based on these values is 250. The distance 
between the jet inlet and the leading tip of the wedge is 7.5. The dimensions of the computational 
domain are 35 and 30 in the flow and cross-flow directions respectively. The mesh has 2392 
elements and 2519 nodes; it is shown in Figure 6. The initial vorticity values are set to zero 
everywhere. At the jet inlet we specify the stream function and its normal derivative to have a 
parabolic velocity profile with mean value 1.0. The left external boundary and the upper and lower 
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Figure 3. Flow past a circular cylinder at Re=100, time step=716; (a) vorticity contours, (b) (c) streamlines, 
(d) stationary streamlines 
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c-' 

Figure 4. Flow past a circular cylinder at Re=100, time step=1200; (a) vorticity contours, (b) (c) streamlines, 
(d) stationary streamlines 
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Figure 6. Edgetone problem at Re=250; finite element mesh: 2392 elements, 2519 nodes 
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computational boundaries are taken as streamlines with zero vorticity. At the downstream 
boundary the normal derivative of both the vorticity and the stream function is set to zero. 
Computations are performed with a time step of 0.05. In this problem it would be grossly 
unjustified to assume that the value of the stream function on the wedge is known. It is therefore 
imperative to use a multiply connected domain approach. 

Figure 7. Edgetone problem at Re=250, time step=250; (a) streamlines, (b) vorticity contours 
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Our solutions compare qualitatively well with those obtained by Ohring,” who used a 
computational grid with 39481 nodes. Initially the plane jet develops symmetrically as shown in 
Figure 7. An asymmetric disturbance is introduced at time step 250. The perturbed flow field then 
loses its symmetry. As it can be seen in Figures 8-1 1, the jet oscillates transversely and has strong 
interaction with the wedge. 

Figure 8. Edgetone problem at Re=250, time step= 1052; (a) streamlines, (b) vorticity contours 
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a 

b 

Figure 9. Edgetone problem at Re=250, time step= 1752; (a) streamlines, (b) vorticity contours 

7. CONCLUSIONS 

In this work we have addressed some of the difficulties associated with the finite element 
approximation of the vorticity-stream function formulation of the incompressible Navier-Stokes 
equations in two dimensions. These difficulties are related to the presence of a convection term in 
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Figure 10. Edgetone problem at Re=250, time step=2352; (a) streamlines, (b) vorticity contours 

the vorticity transport equation, lack of boundary condition for vorticity on no-slip surfaces, and 
computation of the stream function at the internal boundaries. 

We have employed streamline-upwind/Petrov-Galerkin procedures to minimize the numerical 
oscillations which may appear in convection-dominated problems, especially in the presence of 
sharp layers in the flow field. We have developed proper variational formulations to compute the 
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Figure 11. Edgetone problem at Re=250, time step=2952; (d) streamlines, (b) vorticity contours 

vorticity on no-slip surfaces and the stream function on internal surfaces, and implemented these 
formulations within the framework of block-iteration schemes. These block-iteration schemes 
favourably permit the utilization of various sophisticated iterative solution techniques such as 
conjugate gradient methods and element-by-element approximate factorization schemes. 

The methods developed were tested on several problems with simply and multiply connected 
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domains. In all cases the results obtained compared qualitatively well with the previously 
published results. It is our belief that these methods, when implemented together with proper 
iterative schemes, will provide a good capability to perform large-scale two-dimensional 
computational studies of problems related to both basic sciences and technological applications. 
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